Merging of Dirac points and Floquet topological transitions in ac-driven graphene

نویسندگان

  • Pierre Delplace
  • Álvaro Gómez-León
  • Gloria Platero
چکیده

We investigate the effect of an in-plane ac electric field coupled to electrons in the honeycomb lattice and show that it can be used to manipulate the Dirac points of the electronic structure. We find that the position of the Dirac points can be controlled by the amplitude and the polarization of the field for high-frequency drivings, providing a new platform to achieve their merging, a topological transition which has not been observed yet in electronic systems. Importantly, for lower frequencies we find that the multiphoton absorptions and emissions processes yield the creation of additional pairs of Dirac points. This provides an additional method to achieve the merging transition by just tuning the frequency of the driving. Our approach, based on Floquet formalism, is neither restricted to specific choice of amplitude or polarization of the field, nor to a low-energy approximation for the Hamiltonian.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Floquet spin states in graphene under ac-driven spin-orbit interaction

We study the role of periodically driven time-dependent Rashba spin-orbit coupling (RSOC) on a monolayer graphene sample. After recasting the originally 4 × 4 system of dynamical equations as two time-reversal related two-level problems, the quasienergy spectrum and the related dynamics are investigated via various techniques and approximations. In the static case, the system is gapped at the D...

متن کامل

Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene.

Ultrafast materials science promises optical control of physical properties of solids. Continuous-wave circularly polarized laser driving was predicted to induce a light-matter coupled state with an energy gap and a quantum Hall effect, coined Floquet topological insulator. Whereas the envisioned Floquet topological insulator requires high-frequency pumping to obtain well-separated Floquet band...

متن کامل

Anomalous Topological Phases and Unpaired Dirac Cones in Photonic Floquet Topological Insulators.

We propose a class of photonic Floquet topological insulators based on staggered helical lattices and an efficient numerical method for calculating their Floquet band structure. The lattices support anomalous Floquet topological insulator phases with vanishing Chern number and tunable topological transitions. At the critical point of the topological transition, the band structure hosts a single...

متن کامل

Floquet topological semimetal phases of an extended kicked Harper model.

Recent discoveries on topological characterization of gapless systems have attracted interest in both theoretical studies and experimental realizations. Examples of such gapless topological phases are Weyl semimetals, which exhibit three-dimensional (3D) Dirac cones (Weyl points), and nodal line semimetals, which are characterized by line nodes (two bands touching along a line). Inspired by our...

متن کامل

Effects of light on quantum phases and topological properties of two-dimensional Metal-organic frameworks

Periodically driven nontrivial quantum states open another door to engineer topological phases in solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013